References
Apostol, Tom. 1967. Calculus Volume 1: One Variable Calculus, With an Introduction to Linear Algebra. Hoboken, New Jersey: John Wiley; Sons, Inc.
Arnold, Vladmir I. 1989. Mathematical Methods of Classical Mechanics. 2nd ed. Graduate Texts in Mathematics n. 60. New York: Springer. Translation of Arnold (1979) by Karen Vogtmann and Alan D. Weinstein, doi:10.1007/978-1-4757-2063-1.
Ax, James. 1978. “The Elementary Foundations of Spacetime.” Foundations of Physics 8(7–8): 507–546, doi:10.1007/bf00717578.
Bennett, Mary Katherine. 1995. Affine and Projective Geometry. Hoboken, New Jersey: John Wiley; Sons, Inc.
Boolos, George. 1987. “A Curious Inference.” The Journal of Philosophical Logic 16(1): 1–12. Reprinted in Boolos (1998, 376–382), doi:10.1007/bf00250612.
Borsuk, Karol and Smielew, Wanda. 1960. Foundations of Geometry: Euclidean and Bolyai-Lobachevskian Geometry. Amsterdam: North-Holland Publishing Co. Revised English translation by Erwin Marquit; reissued as Borsuk and Smielew (2018).
Burgess, John P. 1984. “Synthetic Mechanics.” The Journal of Philosophical Logic 13(4): 379–395, doi:10.1007/bf00247712.
Burgess, John P. and Rosen, Gideon. 1997. A Subject with No Object: Strategies for Nominalistic Interpretations of Mathematics. Oxford: Oxford University Press, doi:10.1093/0198250126.001.0001.
Cantor, Georg. 1897. “Beiträge zur Begründung der transfiniten Mengenlehre, 2.” Mathematische Annalen 49(2): 207–246. Translation by Philip Jourdain in Cantor (1915, 137–201), reprinted in Cantor (1932, 312–356), doi:10.1007/bf01444205.
Carnap, Rudolf. 1958. Introduction to Symbolic Logic and Its Applications. Mineola, New York: Dover Publications. Translation of Carnap (1954) by William H. Meyer and John Wilkinson.
Cocco, Lorenzo and Babic, Joshua. 2021. “A System of Axioms for Minkowski Spacetime.” The Journal of Philosophical Logic 50(1): 149–185, doi:10.1007/s10992-020-09565-6.
Coxeter, Harold Scott MacDonald. 1969. Introduction of Geometry. 2nd ed. Hoboken, New Jersey: John Wiley; Sons, Inc.
Dedekind, Richard. 1872. Stetigkeit und Irrationale Zahlen. Braunschweig: Vieweg. Translated as “Continuity and irrational numbers” by Wooster W. Beman in Dedekind (1963, 1–27), reprinted, with corrections, in Ewald (1996, 765–779).
Dedekind, Richard. 1888. Was sind und was sollen die Zahlen? Braunschweig: Vieweg. Second edition: Dedekind (1893); English translation by Wooster W. Beman in Dedekind (1901); reprinted, with corrections, in Ewald (1996, 787–833).
DiSalle, Robert. 2020. “Space and Time: Inertial Frames.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/sum2020/entries/spacetime-iframes/.
Dummit, David S. and Foote, Richard M. 2004. Abstract Algebra. 3rd ed. Hoboken, New Jersey: John Wiley; Sons, Inc.
Earman, John S. 1970. “Who’s Afraid of Absolute Space?” Australasian Journal of Philosophy 48(3): 287–319, doi:10.1080/00048407012341291.
Earman, John S. 1989. World Enough and Space-Time: Absolute versus Relational Theories of Space and Time. Cambridge, Massachusetts: The MIT Press.
Ehlers, Jürgen. 1973. “The Nature and Structure of Spacetime .” in The Physicist’s Conception of Nature in the Twentieth Century, edited by Jagdish Mehra, pp. 71–91. Dordrecht: Kluwer Academic Publishers, doi:10.1007/978-94-010-2602-4_6.
Einstein, Albert. 1905. “Zur Elektrodynamik bewegter Körper.” Annalen der Physik 17: 891–921. Reprinted in Lorentz et al. (1923, 35–65), doi:10.1002/andp.19053221004.
Feynman, Richard P., Leighton, Robert B. and Sands, Matthew. 2005. The Feynman Lectures on Physics: Definitive Edition. Reading, Massachusetts: Addison-Wesley.
Field, Hartry. 1980. Science without Numbers: A Defense of Nominalism. Oxford: Oxford University Press. Second edition: Field (2016), doi:10.1093/acprof:oso/9780198777915.001.0001.
Friedman, Michael. 1983. Foundations of Space-Time Theories: Relativistic Physics and Philosophy of Science. Princeton, New Jersey: Princeton University Press, doi:10.1515/9781400855124.
Gallier, Jean H. 2011. Geometric Methods and Applications. For Computer Science and Engineering. Texts in Applied Mathematics n. 38. New York: Springer, doi:10.1007/978-1-4419-9961-0.
Gödel, Kurt. 1931. “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I.” Monatshefte für Mathematik und Physik 38: 173–198. English translation in van Heijenoort (1967, 596–616); reprinted in Gödel (1986, 145–195), doi:10.1007/BF01700692.
Gödel, Kurt. 1935. “Über die Länge von Beweisen.” Ergebnisse eines mathematischen Kolloquiums 7: 23–24. Reprinted and translated in Gödel (1986, 396–398), reprinted, with the original page numbers, in Menger (1998, 341–342).
Goldblatt, Robert L. 1987. Orthogonality and Spacetime Geometry. New York: Springer, doi:10.1007/978-1-4684-6345-3.
Hartshorne, Robin. 2000. Geometry: Euclid and Beyond. Undergraduate Texts in Mathematics. New York: Springer, doi:10.1007/978-0-387-22676-7.
Hilbert, David. 1899. Grundlagen der Geometrie. Leipzig: B.G. Teubner. Originally published in “Festschrift zur Feier der Enthüllung des Gauss-Weber Denkmals in Göttingen.” Later editions published in 1903, 1909, 1911, 1922 and 1930. Translation by Leo Unger of the 10th German Edition: Hilbert (1971).
Hölder, Otto. 1901. “Die Axiome der Quantität und die Lehre vom Mass.” Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaften der Wissenschaften zu Leipzig, Mathematisch-physische Classe 53: 1–46.
Huggett, Nick and Hoefer, Carl. 2015. “Absolute and Relational Theories of Space and Motion.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/spr2015/entries/spacetime-theories/.
Huntington, Edward Vermilye. 1903. “Complete Sets of Postulates for the Theory of Real Quantities.” Transactions of the American Mathematical Society 4(3): 358–370.
Ketland, Jeffrey. 2021. “Foundations of Applied Mathematics I.” Synthese 199(1-2): 4151–4193, doi:10.1007/s11229-020-02973-w.
Ketland, Jeffrey. 2022. “A Formalization of Boolos’s ‘Curious Inference’ in Isabelle/HOL.” Archive for Formal Proofs, https://isa-afp.org/entries/Boolos_Curious_Inference.html.
Kopczyński, Wojciech and Trautman, Andrzej. 1992. Spacetime and Gravitation . Hoboken, New Jersey: John Wiley; Sons, Inc.
Kordos, Marek. 1969. “On the Syntactic Form of Dimension Axiom for Affine Geometry.” Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques 18: 833–837.
Longair, Malcolm S. 1984. Theoretical Concepts in Physics. An Alternative View of Theoretical Reasoning in Physics for Final-Year Undergraduates. New York: Cambridge University Press.
Malament, David B. 2009. “Notes on Geometry and Spacetime.” Unpublished lecture notes, version 2.7., November 2009, https://philsci-archive.pitt.edu/id/eprint/16760.
Malament, David B. 2012. Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. Chicago Lectures in Physics. Chicago, Illinois: University of Chicago Press.
Minkowski, Hermann. 1909. “Raum und Zeit.” Physikalische Zeitschrift 10(3): 104–111.
Mundy, Brent. 1986. “Optical Axiomatization of Minkowski Space-Time Geometry .” Philosophy of Science 53(1): 1–30, doi:10.1086/289289.
Pambuccian, Victor. 2011. “The Axiomatics of Ordered Geometry I. Ordered Incidence Spaces .” Expositiones Mathematicae 29(1): 24–66, doi:10.1016/j.exmath.2010.09.004.
Pasch, Moritz. 1882. Vorlesungen über neuere Geometrie. Leipzig: B.G. Teubner.
Penrose, Roger. 1968. “Structure of Space-Time.” in Battelle Rencontres: 1967 Lectures in Mathematics and Physics, edited by Cécile DeWitt-Morette and John Archibald Wheeler, pp. 121–235. San Francisco, California: Benjamin Cummings.
Presburger, Mojzesz. 1930. “Über die Vollständigkeit eines gewissen Systems der Arithmetik.” in Sprawozdanie z I Kongresu Matematyków Krajów Slowánsych, pp. 92–101, 395. Warszawa: Państwow Wydawnictwo Naukowe (PWN). Translated in Stansifer (1984), translated nd commented by Dale Jacquette in Presburger (1991).
Raatikainen, Panu. 2015. “Gödel’s Incompleteness Theorems.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/spr2015/entries/goedel-incompleteness/.
Rindler, Wolfgang. 1977. Essential Relativity: Special, General, and Cosmological. 2nd ed. Berlin: Springer. First edition: Rindler (1969), doi:10.1007/978-3-642-86650-0.
Robb, Alfred A. 1911. Optical Geometry of Motion. A New View of the Theory of Relativity. Cambridge: Heffer & Sons.
Robb, Alfred A. 1936. The Geometry of Time and Space. Cambridge: Cambridge University Press.
Saunders, Simon W. 2013. “Rethinking Newton’s Principia.” Philosophy of Science 80(1): 22–48, doi:10.1086/668881.
Schutz, Bernard F. 1980. Geometrical Methods of Mathematical Physics. Newcastle upon Tye: Cambridge Scholars Publishing.
Schutz, Bernard F. 1997. Independent Axioms for Minkowski Space-Time. London: Chapman & Hall.
Schwabhäuser, Wolfram, Szmielew, Wanda and Tarski, Alfred. 1983. Metamathematische Methoden in der Geometrie. Berlin: Springer, doi:10.1007/978-3-642-69418-9.
Sears, Francis W., Zemansky, Mark W. and Young, Hugh D. 1979. University Physics. 5th ed. Reading, Massachusetts: Addison-Wesley.
Shapiro, Stewart. 1983. “Conservativeness and Incompleteness.” The Journal of Philosophy 80(9): 521–531, doi:10.2307/2026112.
Simpson, Stephen G. and Yokoyama, Keita. 2013. “Reverse Mathematics and Peano Categoricity.” Annals of Pure and Applied Logic 164(3): 284–293, doi:10.1016/j.apal.2012.10.014.
Stein, Howard. 1967. “Newtonian Space-Time .” Texas Quarterly 10(3): 174–200, http://strangebeautiful.com/other-texts/stein-newtonian-spacetime.pdf.
Szczerba, Lesław W. and Tarski, Alfred. 1965. “Metamathematical Properties of Some Affine Geometries.” in Logic, Methodology and Philosophy of Science II, Proceedings of the 1964 International Congress in Jerusalem, edited by Yehoshua Bar-Hillel, pp. 166–178. Amsterdam: North-Holland Publishing Co.
Szczerba, Lesław W. and Tarski, Alfred. 1979. “Metamathematical Discussion of Some Affine Geometries.” Fundamenta Mathematicae 104(3): 155–192. Extension and elaboration of Szczerba and Tarski (1965), doi:10.4064/fm-104-3-155-192.
Tao, Terence. 2008. “What is a Gauge?” Blog post from September 27, 2008, https://terrytao.wordpress.com/2008/ 09/27/what-is-a-gauge/.
Tarski, Alfred. 1935. “Der Wahrheitsbegriff in den formalisierten Sprachen.” Studia Philosophica (Commentarii Societatis Philosophicae Polonorum) 1: 261–405. Translation of Tarski (1933).
Tarski, Alfred. 1946. Introduction to Logic and to the Methodology of Deductive Sciences. 2nd ed. New York: Oxford University Press. First edition: Tarski (1941); reprint: Tarski (1995).
Tarski, Alfred. 1951. “A Decision Method for Elementary Algebra and Geometry.” R-109. Santa Monica, California: RAND Corporation. Prepared for publication by J.C.C. McKinsey, dated August 1, 1948, revised May 1951.
Tarski, Alfred. 1959. “What is Elementary Geometry?” in The Axiomatic Method with Special Reference to Geometry and Physics, edited by Leon Henkin, Patrick Suppes, and Alfred Tarski, pp. 16–29. Amsterdam: North-Holland Publishing Co. Reprinted in Hintikka (1969).
Tarski, Alfred and Givant, Steven. 1999. “Tarski’s System of Geometry.” The Bulletin of Symbolic Logic 5(2): 175–214. A letter to Wolfram Schabhäuser, written originally ca. 1978, doi:10.2307/421089.
Trautman, Andrzej. 1966. “Comparison of Newtonian and Relativistic Theories of Space-Time.” in Perspectives in Geometry and Relativity. Essays in Honor of Václav Hlavatý, edited by Banesh Hoffmann, pp. 413–425. Bloomington, Indiana: Indiana University Press.
Veblen, Oswald. 1904. “A System of Axioms for Geometry.” Transactions of the American Mathematical Society 5(3): 343–384.
Wald, Robert M. 1984. General Relativity. Chicago, Illinois: University of Chicago Press.
Weinberg, Steven. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Hoboken, New Jersey: John Wiley; Sons, Inc.
Further References
Arnold, Vladmir I. 1979. Matematicheskie metody klassicheskoǐ mekhaniki. 2nd ed. Moscow: Nauka pub.
Boolos, George. 1998. Logic, Logic, and Logic. Cambridge, Massachusetts: Harvard University Press. Introductions and afterword by John P. Burgess; edited by Richard Jeffrey, doi:10.1080/01445340051095856.
Borsuk, Karol and Smielew, Wanda. 2018. Foundations of Geometry. Part I: Euclidean and Bolyai-Lobachevskian Geometry. Amsterdam: North-Holland Publishing Co. Reissue of Borsuk and Smielew (1960).
Cantor, Georg, ed. 1915. Contributions to the Founding of the Theory of Transfinite Numbers. LaSalle, Illinois: Open Court Publishing Co. Translated with an introduction and notes by Philip Edward Bertrand Jourdain.
Cantor, Georg. 1932. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Berlin: Julius Springer. Reprinted Hildesheim: Olms, 1966.
Carnap, Rudolf. 1954. Einführung in die symbolische Logik. Wien: Springer, doi:10.1007/978-3-7091-3534-1.
Dedekind, Richard. 1893. Was sind und was sollen die Zahlen? 2nd ed. Braunschweig: Vieweg.
Dedekind, Richard. 1901. Essays on the Theory of Numbers. LaSalle, Illinois: Open Court Publishing Co. Translation by Wooster W. Beman; reissue: Dedekind (1963).
Dedekind, Richard. 1963. Essays on the Theory of Numbers. Mineola, New York: Dover Publications. Reissue of Dedekind (1901).
Ewald, William Bragg, ed. 1996. From Kant to Hilbert: A Source Book in the Foundations of Mathematics. Volume II. Oxford: Oxford University Press, doi:10.1093/oso/9780198505365.001.0001.
Field, Hartry. 2016. Science without Numbers: A Defense of Nominalism. 2nd ed. Oxford: Oxford University Press. First edition: Field (1980), doi:10.1093/acprof:oso/9780198777915.001.0001.
Gödel, Kurt. 1986. Collected Works. Volume I: Publications 1929–1936. Oxford: Oxford University Press. Edited by Solomon Feferman, John W. Dawson, Jr., Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay and Jean van Heijenoort, doi:10.1093/oso/9780195147209.001.0001.
van Heijenoort, Jan, ed. 1967. From Frege to Gödel: A Source Book in Mathematical Logic 1879-1931. Cambridge, Massachusetts: Harvard University Press.
Hilbert, David. 1971. Foundations of Geometry. LaSalle, Illinois: Open Court Publishing Co. Translation by Leo Unger of the 10th German Edition of Hilbert (1899).
Hintikka, Jaakko. 1969. The Philosophy of Mathematics. Oxford: Oxford University Press.
Lorentz, Hendrik A., Einstein, Albert, Minkowski, Hermann and Weyl, Hermann. 1923. The Principle of Relativity. A Collection of Original Papers on the Special and General Theory of Relativity. London: Methuen & Co. With notes by Arnold Sommerfeld, translated by W. Perrett and G.B. Jeffery; reprinted as Lorentz et al. (1952).
Lorentz, Hendrik A., Einstein, Albert, Minkowski, Hermann and Weyl, Hermann, eds. 1952. The Principle of Relativity. Mineola, New York: Dover Publications. Reprint of Lorentz et al. (1923).
Menger, Karl, ed. 1998. Ergebnisse eines mathematischen Kolloquiums. Wien: Springer. Herausgegeben von E. Dierker, K. Sigmund, mit Beiträgen von J.W. Dawson Jr., R. Engelking und W. Hildenbrand, Geleitwort von G. Debreu, Nachwort von F. Alt, doi:10.1007/978-3-7091-6470-9.
Presburger, Mojzesz. 1991. “On the Completeness of a Certain System of Arithmetic of Whole Numbers in which Addition Occurs as the Only Operation.” History and Philosophy of Logic 12(2): 225–233. Translation and comment of Presburger (1930) by Dale Jacquette, doi:10.1080/014453409108837187.
Rindler, Wolfgang. 1969. Essential Relativity: Special, General, and Cosmological. Berlin: Springer.
Stansifer, Ryan. 1984. “Presburger’s Article on Integer Arithmetic: Remarks and Translation.” TR84-639. Ithaca, New York: Cornell University, Computer Science Department, https://hdl.handle.net/1813/6478.
Tarski, Alfred. 1930. “O pojęciu prawdy w odniesieniu do sformalizowanych nauk dedukcyjnych.” Ruch Filozoficzny 12: 210a–211b, https://diglib.eodopen.eu/view/uuid:8ab4ad95-f676-3642-a531-f9e636a7040b.
Tarski, Alfred. 1933. “Pojęcie prawdy w językach nauk dedukcyjnych.” Prace Towarzystwa Naukowego Warszawskiego, Wydział III, nauk matematyccznofizycznych (Travaux de la Société des Sciences et des Lettres de Varsovie, Classe III, Sciences Mathématiques et Physiques) 26. Lectures given at the Logic Section of the Philosophical Society in Warsaw on October 8, 1930 and at the Polish Philosophical Society in Lwów on December 5, 1930; reprinted in Zygmunt (1995, 13–172); a summary of the chief results was published as Tarski (1930) and a revised German translation was published as Tarski (1935); English translation Tarski (1956, 152–278).
Tarski, Alfred. 1936. O logice matematycznej i melodzie dedukcyjnej. Lwów: Ksiaznica-Atlas. Translated into German: Tarski (1937).
Tarski, Alfred. 1937. Einführung in die mathematische Logik und in die Methodologie der Mathematik. Wien: Springer Verlag. Translation of Tarski (1936), doi:10.1007/978-3-7091-5928-6.
Tarski, Alfred. 1941. Introduction to Logic and to the Methodology of Deductive Sciences. New York: Oxford University Press. Revised and enlarged edition of Tarski (1936).
Tarski, Alfred. 1956. Logic, Semantics, Metamathematics. Papers from 1923 to 1938. 1st ed. Oxford: Oxford University Press. Trans. J.H. Woodger, 2nd edition: Tarski (1983).
Tarski, Alfred. 1983. Logic, Semantics, Metamathematics. 2nd ed. Indianapolis, Indiana: Hackett Publishing Co. Trans. J.H. Woodger, edited and introduced by John Corcoran, 1st edition: Tarski (1956).
Tarski, Alfred. 1995. Introduction to Logic and to the Methodology of Deductive Sciences. 2nd ed. Mineola, New York: Dover Publications. Reprint of Tarski (1946).
Zygmunt, Jan, ed. 1995. Alfred Tarski, Pisma Logiczno-Filozoficzne, vol. 1. Warszawa: Państwow Wydawnictwo Naukowe (PWN).